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Setting

1 No indications in favour of predictions from BSM models

2 No statistically significant deviations in SM precision measurements

Sounds good.
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Setting

The rise of “model-independent” methods

1 SM precision measurements

2 Deep Learning

to analyse low-level data with fewer high-level physics assumptions

Part of a open-ended strategy for discovery
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Roles and Aim

Roles DL in HEP

1 efficiency

2 performance

3 model independence

Hierarchical data representation

well-suited to the absurdly high-dimensional data of HEP
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Rise of the Machine (Learning Approach)
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Overview

1 Deep Learning in HEP

2 Epistemic Issues



Nodes

yout = Fw(yin) (1)
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Changing Game

“In the relatively few years that modern machine learning has existed, it has
already made traditional collider physics obsolete. In the past, physicists, in-
cluding me, would devote their efforts to understanding signatures of particular
particles or processes from first-principles: why should a stream of pions coming
from a W boson decay look different than a stream coming from an energetic
gluon? Now we simply simulate the events, and let a neural network learn to
tell the two samples apart.”

(Schwartz, 2021)
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Curse of Dimensionality

The difficulty that deep learning can deal with is not the sheer amount of data, but the
high-dimensionality of LHC data

Task in HEP

estimate probability function p(x|θ) of observing some data x, given the model’s
parameters θ

estimating is possible for low-dimensional data (d < 5)

number of samples to estimate the function grows with the power of the
dimensionality of data Nd

(Guest et al., 2018)

Must reduce the dimensionality of the data,

d = O108*
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Reducing Dimensionality

Strategy

Construct higher-level, lower-dimensional objects and analyse those

Steps

1 reconstruction algorithms are used to process raw data into objects (clusters and
tracks)

2 use this to estimate the energy and momentum of particles

3 identify particles

4 build event-level summaries

5 perform event selection for further analysis

event rate ∼ 40kHz
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Reducing Dimensionality

The reconstruction and selection are traditionally based on physicist-identified features
of the data (having a given particle(of a certain energy), shape of the shower in the
calorimeter, etc.)

leading-order processes

works pretty well, but not optimal

DL helps optimize this process
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Hierarchical Data Representation

Image Recognition HEP

Shapes → Objects Particles → Events

Edges → Shapes Tracks → Particles

Pixels → Edges Hits → Tracks

High level

Middle level

Low level
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Uses of DL in HEP

All Along Data Pipeline

1 Simulation

2 Improving triggering

3 Low-level: hit and track reconstruction

4 Mid-level: object identification

5 High-level: event classification

The Need for Speed
At HL-LHC, there will be 7x luminosity (20x run-2 data set), not enough more
computing resources

ML has been used for decades (multivariate analysis, boosted decision trees)

DL solutions are needed*
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Object Identification

The idea

have DL run through low-level data and identify an object (tell two objects apart)
without telling it how to do so*
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Object Identification

Figure: Three different deep learning classifiers, labelled DNN, CNN, and (GN) GoogleNet
compared with the traditional BDT in the task of distinguishing γ vs. π0. These deep networks
featured between three and fifteen million trainable parameters (Belayneh et al., 2020).
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Object Identification

“Our analysis shows that recent advances in deep learning techniques may lift
these limitations by automatically discovering powerful non-linear feature com-
binations and providing better discrimination power than current classifiers—
even when aided by manually-constructed features”

(Baldi, 2014, p. 9)
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Object Identification

If you want to tag a top quark (tt̄ pair production)

don’t tell the model that the top is heavy, that it decays to three other jets, that
it has a slightly displaced vertex, etc.

feed it tons of simulated data and it will have a higher success rate*
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Discovery

Deep Learning as a Model Independent Strategy

run through the entire data with minimal assumptions

make decisions based on many variables at the same time

identify background without knowing the SM

identify anomalous events
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Discovery

Figure: In their own words, “A comparison between the performance of deep networks (DNs) in
signal–background classification and that of shallow networks (NNs) with a variety of low- and
high-level features demonstrates that DNs with only low-level features outperform all other
approaches” (Guest et al., 2018, p. 169)
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Epistemic Difficulties in HEP

1 No theory of DL

2 (Over)Reliance on simulated data

3 Mismodelling

4 Interpretability and understanding
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1. No Theory

The mathematical theory of statistical learning lags far behind the success of DL
models

little to offer in terms of design and refinement of algorithms and new techniques

matter of heuristics and trial and error

no theoretical guarantee of reliability or optimality

(Bahri et al., 2020; Belkin, 2021)
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2. Reliance on Simulation

Simulations and simulated data is used everywhere in HEP

(Morrison, 2015)

detector response cannot be analytically computed

Quantum data

The quantum nature of the real event means that simulated data is different

there are no ground truths
for a given event, you cannot say ‘Higgs’ or ‘no Higgs’ decisively
all one can do is collect statistics and try to reject the background only hypothesis

(Schwartz, 2021)
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3. Mismodelling

Trusted simulations work in low-dimensional spaces with high-level physics features

correlations in a high-dimensional space may not be faithful

Just because a model has a better false-positive rate doesn’t mean it will perform
better in particle identification

e.g. if it works better on simulated data than real

performance will be up to systematic uncertainties, signal-to-background ratio,
etc.

things that are traditionally accounted for, but ignored in DL*
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4. Interpretation and Understanding

“Generically, we should anticipate a trade-off between performance and inter-
pretability”

(Guest et al., 2018, p. 175)

It is not a like an analytic function, where the structure of the solution can be analysed

reverse engineering the classification strategy is impossible due to the
high-dimensional nature of the data and the number of parameters of the models

The decisions may be faster, more accurate, more computationally tractable, but as
long as we don’t understand the decisions, they will be of limited benefit
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4. Interpretation and Understanding

Specificity

Perhaps something learned in a network trained on top tagging could be useful in
bottom tagging, but we won’t know

Sharing with other experiments may not be possible, since they run different
hardware, often software*

Non-traditional

not a cut-based analysis given in histograms and natural language description

you get a multidimensional result that cannot even be graphically represented*
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Issues but not Problems

1 No theory is kind of okay, as long as it works [1]

2 Sufficient data for reliability [2,3]

3 Post hoc interpretation—DNNs don’t do everything [4]
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1. Theory of Deep Learning

Justification is not explanation

justification comes from success

its decisions can be easily justified, but not easily explained

The proof is in the pudding

theoretical guarantees still rely on statistical arguments that are essentially about
reliability of results
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2. Simulated and Real Data

No need

In principle, one can proceed in HEP entirely without simulations

if it can be simulated, it can be done with pen and paper
it would be slow

Use real data

DL can also be run on real data (without ground truths), or mix of real and sim

there is roughly the same amount of sim and real data at LHC (trillion events)

simulations are rigorously validated*
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3. Piles of Data

Sufficient data

in HEP there is too much data and computing resources

train and test until the cows come home*
statistical errors are small, systematics become the issue

DL can help with this too! (errorsys → ν)

Varied approaches

data is public and there are open competitions

new approaches and architectures are tried across the globe
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4. After Discovery

Maybe its just not for that

it is not already a model of new physics

if an anomaly is discovered, the deep CNN (or whatever it is) will provide no
understandable model in terms of intuitive physics

But it will indicate where new physics is

then traditional model-building will turn on

similar to EFT approach

similar to xAI

It can be tool to identify correlations, but it will not likely help in interpreting the data
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Conclusion: Role for DL in HEP

three important feature of DL: performance, efficiency, and model independence

has many practical and epistemic difficulties to overcome

but these are issues not problems
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Closing

Thank you
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m.king@lmu.de
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Triggers

CMS/ATLAS have ∼100 million channels sampled every ∼25ns

60Tb/s raw data

40 million events/s must be searched in real time

1 L1 hardware trigger → 100k/s

calorimeter + muon spectrometer energy threshold (+topo)
decision in 200 nano secs

2 L2 software (high-level) trigger → 1000/s

jets, missing pT

3 ATLAS has L3 trigger → 200 events
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Triggers

DL offers the possibility of triggering on events that cannot currently be stored

acceptance 1 in 40,000 events

can write 15Pb/y for offline analysis

try to keep low-energy DM signatures, b and c quark physics, etc.

event selection based on cuts may miss a lot of events of interest

(ATLAS Collaboration, 2021; CMS, 2018)
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