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Preface

“No, there is no crisis in particle physics. Except maybe in some people’s
minds. But the thing is that we are living in times that we don’t know yet.
We are at a real crossroads, if you want, and we can’t disentangle yet where
the arrows pointing or which ones we should be following.”

(De Roeck, 03.07.19)

1/56



Introduction

1 No indications in favour of predictions from BSM models

2 No statistically significant deviations in SM precision measurements

Sounds good.
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Introduction

1 SM research programme is (in a sense) complete

SM as a theory is not

2 No new high-energy particle accelerator

theorists and experimentalists have to get clever
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Introduction

So, where will new physics come from?

well, we don’t know, but discoveries

won’t be done in the same way
won’t be easy

it will require an openness

an independence from traditional modelling assumptions
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Introduction

The rise of “model-independent” methods

1 SM precision measurements

to search for any deviations whatever

2 SMEFT

to parametrise deviations given some assumptions

3 Deep Learning

to analyse low-level data with fewer high-level physics assumptions
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Uncertain Times

1 Identify, examine, and minimise the role of biases
explore new alternatives
re-evaluation of principles (e.g., naturalness)
model-based → model-independent (top-down → bottom-up)

2 Shift in cognitive division of labour

“So just before the Higgs discovery, I was just doing model building for model
building’s sake. And I don’t do that at all any more. I’m much more connected
to experiment and I think that’s true for most people.”

Matthew McCullogh
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Shifting Approaches
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Underdetermination

BSM models are underdetermined by data

1 theory assessment; non-empirical theory confirmation (Dawid, 2019, 2022)

2 novel ways of looking at empirical evidence; model-independent methods and DL
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Whence New Physics?

Possible theoretical avenues:

1 big, beautiful theories

2 small, low-energy models connected to current experiments

3 reevaluating assumptions/questioning foundations

4 accept fine-tuning, ad hocness

Forget a theory of everything,
“I’d be happy with a theory of anything,”

John Ellis
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Whence New Physics?

Possible experimental avenues:

1 higher energy collider

2 astro-particle physics/cosmology

3 neutrino observatories

4 SM precision tests at HL-LHC, elsewhere

Higgs physics
b-quarks
muon g-2

5 low energy frontier

long-lived particles (FASER), axion experiments, etc.

6 DL on existing and new data
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Comb Through the Data
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Spectrum of Model Independence

model-dependent: full BSM models
search for processes and signatures in the context of a particular, well-defined BSM
model

charged Higgs of Type-II 2HDM with mSUSY

Very specific, narrow focus

partially model-dependent: simplified models
search for particles common to many BSM models

leptoquark, vector triplet, stop

specific, broadly applicable searches

model-independent: precision measurements, using SMEFT, e.g.

not to search for predictions of a model but search for deviations against the
background

12/56



Spectrum of Model Independence

model-dependent: full BSM models
search for processes and signatures in the context of a particular, well-defined BSM
model

charged Higgs of Type-II 2HDM with mSUSY

Very specific, narrow focus

partially model-dependent: simplified models
search for particles common to many BSM models

leptoquark, vector triplet, stop

specific, broadly applicable searches

model-independent: precision measurements, using SMEFT, e.g.

not to search for predictions of a model but search for deviations against the
background

12/56



Spectrum of Model Independence

model-dependent: full BSM models
search for processes and signatures in the context of a particular, well-defined BSM
model

charged Higgs of Type-II 2HDM with mSUSY

Very specific, narrow focus

partially model-dependent: simplified models
search for particles common to many BSM models

leptoquark, vector triplet, stop

specific, broadly applicable searches

model-independent: precision measurements, using SMEFT, e.g.

not to search for predictions of a model but search for deviations against the
background

12/56



Model Independence

Model Independence is characterised by:

a strong reduction of the influence of modelling biases

For BSM searches:

1 a lack of a well-defined target model or target phenomenon

2 where there is a well-defined background theory (SM) against which deviations
can be observed

this can be relaxed
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Deep Learning as Model Independence

Deep Learning

provides the tools to make analyses based on ‘low-level’ data with minimal
preprocessing and input from physicists

can be unsupervised

aim of finding patterns in data, without being told what patterns to look for

anomaly detection

Model Independence

doesn’t have to stem from deep networks

not qualitative difference, but significant quantitative
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What is Deep Learning?

Neural Network

automated decision algorithm of nodes and links, thought to resemble neurons in
a brain

nodes are organized in layers from input through hidden layers to output
the outputs are weighted with free parameters (matrix)
through tuning the parameters to data, the model ‘learns’ to optimize the weights

shallow or deep

hidden layers
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Nodes

yout = Fw(yin) (1)
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Processing

Steps

1 an input signal sent to some array of nodes

2 the nodes compute their activation functions and pass an output signal to the
next layer along their links

3 these links have different weights w which modify outputs at every stage

4 the activation of the nodes propagates until it reaches the output layer of nodes

5 this is then decoded and taken as the network’s decision for that input

6 typically there is a teaching or training goal, such that the network adjusts its
weights to best achieve the goal

(Buckner, 2019)
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The Deep End

1 Convolution

linear operation passes a kernal/filter over the data to amplify desired features
exploits ‘translational’ symmetry, reducing the number of parameters

2 Rectification (ReLU)

threshold activation unit

3 Max Pooling

downsampling function, combining many kernals(filters), pooling only maximum
values
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Goals

The main practical goal is generalisation

1 learn a set of data

avoid underfitting
divide data into training set and test set

2 have it apply to new data

avoid overfitting
various methods of regularization

dropping out nodes, penalty terms, modifying input data, etc.
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apt

xpub

xpub

Reward is rare

1 conduct a bunch of trajectories

2 sum over rewards for each

3 apply gradient training

Backpropagation

→ true gradient

approximate with stochastic gradient
descent
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Changing Game

“In the relatively few years that modern machine learning has existed, it has
already made traditional collider physics obsolete. In the past, physicists, in-
cluding me, would devote their efforts to understanding signatures of particular
particles or processes from first-principles: why should a stream of pions coming
from a W boson decay look different than a stream coming from an energetic
gluon? Now we simply simulate the events, and let neural network learn to tell
the two samples apart.”

(Schwartz, 2021)
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Curse of Dimensionality

The difficulty that deep learning can deal with is not the sheer amount of data, but the
high-dimensionality of LHC data

Task in HEP

estimate probability function p(x|θ) of observing some data x, given the model’s
parameters θ

estimating is possible for low-dimensional data (d < 5)

number of samples to estimate the function grows with the power of the
dimensionality of data Nd

Must reduce the dimensionality of the data, d = O108

(Guest et al., 2018)
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Reducing Dimensionality

Strategy

Construct higher-level, lower-dimensional objects and analyse those

Steps

1 reconstruction algorithms are used to process raw data into objects (clusters and
tracks)

2 use this to estimate the energy and momentum of particles

3 identify particles

4 build event-level summaries

5 perform event selection for further analysis

The reconstruction and selection are traditionally based on physicist-identified features
of the data (shape of the shower in the calorimeter)

works pretty well, but not optimal

DL helps optimize this process

23/56



Reducing Dimensionality

Strategy

Construct higher-level, lower-dimensional objects and analyse those

Steps

1 reconstruction algorithms are used to process raw data into objects (clusters and
tracks)

2 use this to estimate the energy and momentum of particles

3 identify particles

4 build event-level summaries

5 perform event selection for further analysis

The reconstruction and selection are traditionally based on physicist-identified features
of the data (shape of the shower in the calorimeter)

works pretty well, but not optimal

DL helps optimize this process

23/56



Optimization

Most tasks can be formulated in terms of the optimization of a loss function L[y, f(x)]

search f(x) that optimizes move from high-dimensional space of observed data →
low-dimension space

the (reduced) space of functions searched is given by a series of transformations
mapping inputs x onto hidden states hi and then to the output y

hi+1 = gi(Wihi + bi) (2)

where gi is the activation function and a particular hi is the ith transformation, called
the embedding and the W ’s are matrices and the b’s are biases

the model is trained by optimizing the values of the weights

training examples are used to calculate the gradient of the loss function with
respect to the model parameters ∇ϕL[fϕ(x), y], often via backpropagation
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Hierarchical Data Representation

Image Recognition HEP

Shapes → Objects Particles → Events

Edges → Shapes Tracks → Particles

Pixels → Edges Hits → Tracks

High level

Middle level

Low level
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A Third Benefit of DL

1 Outperforms traditional methods in many areas

2 More computationally efficient

3 Offers model-independent ways of analyzing data
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Uses of DL in HEP

All Along Data Pipeline

1 Simulation

2 Improving trigger timing

3 Low-level: hit and track reconstruction

4 Mid-level: object identification

5 High-level: event classification

The Need for Speed
At HL-LHC, there will be 7x luminosity (20x run-2 data set), not enough more
computing resources

ML has been used for decades (multivariate analysis, boosted decision trees)

DL solutions are needed
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DL in Simulation

1 Detector

discovery requires comparing the detector response with SM and BSM expectations
detector response cannot be analytically computed

2 Events

Trillions of collisions need to be simulated in order to make accurate comparisons
DL can learn the physics and generate new events

3 Background

background can be learned more accurately (can be in situ)
aid in anomaly detection
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Triggers

CMS/ATLAS have ∼100 million channels sampled every ∼25ns

60Tb/s raw data

40 million events/s must be searched in real time

1 L1 hardware trigger → 100k/s

calorimeter + muon spectrometer energy threshold (+topo)
decision in 200 nano secs

2 L2 software (high-level) trigger → 1000/s

jets, missing pT

3 ATLAS has L3 trigger → 200 events
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Triggers

DL offers the possibility of triggering on events that cannot currently be stored

acceptance 1 in 40,000 events

can write 15Pb/y for offline analysis

try to keep low-energy DM signatures, b and c quark physics, etc.

event selection based on cuts may miss a lot of events of interest

(ATLAS Collaboration, 2021; CMS, 2018)
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Low-level: Track Reconstruction

may only be one event of interest in a bunch of 150-200 interactions

the rest is called pile up

it can be removed by having the algorithm remove noise

DNN can more faithfully and more quickly build tracks from hits
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Low-level: Track Reconstruction

Process

1 clusters hits in innermost chamber (pixel sensors)

2 108 pixel channels give 103 tracks

3 almost 100% efficient, but computationally very intensive

at HL-LHC increase in events/s leads to combinatorial increase in false seeds for
tracks
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Mid-level: Jet Classification

1 flavour tagging

top tagging: high mass, decays to 3 lighter quarks (jets), displaced vertex
ignore the physics, let the DNN decide which features to care about

2 substructure tagging

structure of calorimeters makes for a cylindrical projective surface on which the
detectors can serve like pixels of image
leverage DL image recognition
typically requires preprocessing, but DL works better without

(Guest et al., 2018; Schwartz, 2021)
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High-level: Event Selection

Traditionally

analyses use reconstructed invariant masses of particles

high-level physicist-processed data

DL end-to-end

can use 4-momenta

low-level raw data with minimal input and processing

outperforms traditional classification

(Guest et al., 2018; Baldi, 2014)
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Discovery

Task: distinguish signal from background
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Discovery

A signal is often a peak due to resonance

in that region the background is negligible

elsewhere the signal is negligible

Probability distribution
Pdata = αSPS + αBPB (3)

and then determine the coefficients and see if αS is zero

it takes many, many events to be able to constrain αS

analyses typically done on one variable at a time (histogram)
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Discovery

Deep Learning

run through the entire data with minimal assumptions

make decisions based on more than one variable at the same time

identify background without knowing the SM

identify anomalous events

rank by typicality
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Model-Independent Strategy

If you want to tag a top quark (tt̄ pair production)

don’t tell the model that the top is heavy, that it decays to three other jets, that
it has a slightly displaced vertex, etc.

feed it tons of simulated data and it will have a higher success rate
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Epistemic Issues with DL

1 lack of theory

no help in design

2 lack of opacity

which features is it latching onto?

3 lack of explainability

how are decisions justified?

4 predictions without explanation

getting an answer is nice, but will it give us satisfying explanations?
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Opacity

Given any decision, we don’t know along what lines it was made

model decision output with understandable model (xAI)

need to show over which domain the net is reliable and accurate, where it breaks
down, and where its behaviour is uncertain
can’t always be done
no guarantee that it is picking up on the same features
means more computation

vary input

are we varying it in the right way?

(Boge, 2021; Mittelstadt et al., 2019)

40/56



Explanation

1 explaining the model’s decisions

in many contexts one may be asked to justify to decision
all one can point to is the reliability of the outcome

2 using the input-output in explanation

like a black-box or complex simulation
limited use

no view of the process/components
no causal or mechanical information

3 Not an ordinary black box

there is an in-principle opacity

(Boge, 2021; Schubbach, 2019; Sullivan, 2019)

41/56



Explainable AI

There are two broad aims in xAI

1 transparency—how a model functions internally

simulatability
decomposability
algorithmic transparency

2 post hoc interpretation—how the model behaves

input-output relations
relative influence of components
local explanations by retrofitting a simplified model, or assessing its robustness
identifying most similar training data

(Mittelstadt et al., 2019)

42/56



Overview

1 Introduction
State of the Art
Crossroads

2 Deep Learning
Basics
Deep Learning in HEP

3 Epistemic Issues
In General
Issues in HEP



Epistemic Difficulties

1 No theory of DL

2 Reliance on Simulated Data

3 Mismodelling

4 Interpretability and Understanding
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1. No Theory

The mathematical theory of statistical learning lags far behind the success of DL
models

little to offer in terms of design and refinement of algorithms and new techniques

matter of heuristics and trial and error

No theoretical guarantee of reliability or optimality

(Bahri et al., 2020; Belkin, 2021)
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2. Reliance on Simulation

Simulations and simulated data is used everywhere in HEP

(Morrison, 2015)

Quantum data The quantum nature of the real event means that simulated data is
different

there are no ground truths

for a given event, you cannot say ‘Higgs’ or ‘no Higgs’ decisively

all one can do is collect statistics and try to reject the background only hypothesis

(Schwartz, 2021)
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3. Mismodelling

Trusted simulations work in low-dimensional spaces with high-level physics features

correlations in a high-dimensional space may not be faithful

Just because a model has a better false-positive rate doesn’t mean it will perform
better in particle identification

e.g. if it works better on simulated data than real

performance will be up to systematic uncertainties, signal-to-background ratio,
etc.

things that are traditionally accounted for, but ignored in DL
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4. Interpretation and Understanding

Progress on computation is often a trade off with understanding the model’s decisions
“Generically, we should anticipate a trade-off between performance and inter-
pretability”

(Guest et al., 2018, p. 175)

It is not a like an analytic function, where the structure of the solution can be analysed

reverse engineering the classification strategy is impossible due to the
high-dimensional nature of the data

The decisions may be faster, more accurate, more computationally tractable, but as
long as we don’t understand the decisions, they will be of limited benefit

maybe the features being picked up on could be insightful, but we won’t know
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4. Interpretation and Understanding

Specificity

Perhaps something learned in a network trained on top tagging could be useful in
bottom tagging, but we won’t know

Sharing with other experiments may not be possible, since they often run different
software

Non-traditional

not a cut-based analysis given in histograms and natural language description
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Issues but not Problems

1 No theory is kind of okay, as long as it works

2 Sufficient data for reliability

3 Post hoc interpretation—the model’s don’t do everything
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1. Theory of Deep Learning

Justification is not explanation

justification comes from success

its decisions can be easily justified, but not easily explained

The proof is in the pudding

theoretical guarantees still rely on statistical arguments that are essentially about
reliability of results
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2. Simulated and Real Data

No need In principle, one can proceed in HEP entirely without simulations.

if it can be simulated, it can be done with pen and paper

it would be slow

Use real data

DL can also be run on real data (without ground truths), or mix of real and sim

there is roughly the same amount of sim and real data at LHC (trillion events)
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3. Piles of Data

Sufficient data

in HEP there is too much data and computing resources

train and test until the cows come home
statistical errors are small, systematics become the issue

DL can help with this too! (errorsys → ν)

Varied approaches

data is public and there are open competitions

new approaches and architectures are tried across the globe
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4. After Discovery

Maybe its just not for that

it is not already a model of new physics

if an anomaly is discovered, the deep CNN (or whatever it is) will provide no
understandable model in terms of intuitive physics

But it will indicate where new physics is

then traditional model-building will turn on

similar to EFT approach

similar to xAI

It is can be tool to identify correlations, but it will not likely help in interpreting the
data
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Conclusion: the Big Data Approach

“statistical algorithms find patterns where science cannot”

“We usually don’t know about causation, and we often don’t necessarily
care. . . the objective is more to predict than it is to understand the world. . . It
just needs to work; prediction trumps explanation.”

(Kitchin, 2014)
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Conclusion: Role for DL in HEP

three important feature of DL: performance, efficiency, and model independence

has many practical and epistemic difficulties to overcome

but these are issues not problems
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Closing

Thank you

Martin King
m.king@lmu.de

www.philphys.com
Munich Center for Mathematical Philosophy, LMU
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