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Introduction

Two major difficulties for understanding

1 Opacity of the network

2 Uninterpretability of the output

However, DNNs are a powerful tool to aid in scientific discovery

as such, they will help us understand the world
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Overview

1 DNNs in HEP

2 Opacity and Uninterpretability

3 Evading Worries



Machine Learning in HEP

Around for decades (BDTs, multivariate analysis)1

DNNs are changing the game

1(Albertsson et al., 2019; Bourilkov, 2020)
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Machine Learning in HEP

“In the relatively few years that modern machine learning [deep learning] has
existed, it has already made traditional collider physics obsolete. In the past,
physicists, including me, would devote their efforts to understanding signatures
of particular particles or processes from first-principles: why should a stream
of pions coming from a W boson decay look different than a stream coming
from an energetic gluon? Now we simply simulate the events, and let neural
network learn to tell the two samples apart.”2

2(Schwartz, 2021, p. 10)
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Machine Learning in HEP

“Our analysis shows that recent advances in deep learning techniques may lift
these limitations by automatically discovering powerful non-linear feature com-
binations and providing better discrimination power than current classifiers—
even when aided by manually-constructed features,”3.

3(Baldi, 2014, p. 9)
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Reduced role for physics knowledge (leading-order processes)

High-performance decisions may not based on physicist identified features

Do we understand these decisions?
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DNN

Many roles:

distinguishing dark matter signatures in LHC physics 4, in searching for exotic
Higgs decays 5, and in jet flavour tagging 6, top tagging 7, optimizing the
reduction of a nuisance parameter 8, to improve the triggers at the LHC 9,
anomaly detection 10, and many more examples are emerging every week.

4(Khosa et al., 2021)
5(Jung et al., 2022)
6(Munoz et al., 2022)
7(Kasieczka et al., 2019)
8(D’Agnolo and Wulzer, 2019)
9(Pol et al., 2020)

10(Collins et al., 2018; Pol et al., 2020; Chekanov and Hopkins, 2022)
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Anomaly Hunting: AEN

Autoencoder Networks

Consist of an encoder and a decoder

Transform inputs into low-dimensional latent representations (e.g. abstract vector
space of feature values)
Then elaborate the latent representations back to high-dimensional representations
Trained to minimize the error, calculated as the difference between the output and
the input

unsupervised (or better, self-supervised)
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Anomaly Hunting: AEN

Figure: (Fraser et al., 2022)
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Anomaly Hunting

Basic Programme

1 Preprocess data to be suitable for the network

2 Train and optimize network

Have it learn the SM background with small reconstruction error

3 Perform BSM benchmarking

Ensure that the model gives large reconstruction errors for a variety of BSM
scenarios, for additional W ′, Z ′, leptoquarks, charged Higgs, etc.

4 Test on real CERN data

5 Study the flagged regions with various other resources
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Signal over Background

Learn background and subtract it from the real data, leaving a cleaner signal (if
there is one)
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Signal over Background

Figure: (Guest et al., 2018)
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Reducing Dimensionality

Steps

1 reconstruction algorithms are used to process raw data into objects (clusters and
tracks)

2 use this to estimate the energy and momentum of particles

3 identify particles

4 build event-level summaries

5 perform event selection for further analysis

The reconstruction and selection are traditionally based on physicist-identified features
of the data

DNNs outperform at every step
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Classification

Figure: γ vs. π0 (Belayneh et al., 2020)
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End-to-End

Perform high-level event classification on low-level data

Use 4-momenta directly, or images of angular distributions, without explicitly
resolving particles in intermediate steps 11

11(Andrews et al., 2020; Baldi et al., 2022; Farina et al., 2020)
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End-to-End

“The shallow neural networks and BDTs trained with the high-level features
perform significantly better than those trained on only the low-level features,
demonstrating the importance of feature engineering in shallow machine learn-
ing models. . . only the deep learning approach shows nearly equal performance
using the low-level features and the complete features. This suggests that it
is automatically discovering high-level abstractions similar to those captured
by the hand-engineered features, obviating the need for laborious feature en-
gineering,”12

12(Baldi et al., 2022, p. 6–7)
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Opacity Worries

We can’t see what the network has learned

We don’t understand why the network works so well

We don’t understand how each decision is made
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Uninterpretability Worries

Outputs can be non-linear correlations between huge number of variables

Variables do not necessarily correspond to measurable quantities and are not
always easily represented or described
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Not Understanding Worries

These are real concerns, but they shouldn’t make us worry that they block or don’t
contribute to our understanding

Science uses extremely complex non-DNN models

DNNs are only a part of a multi-pronged approach of discovery

Not like areas where there are ethical issues, one-off decisions

We have increasingly better xAI methods
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Not Dissimilar

DNNs are not relevantly dissimilar from

extremely complex models and simulations

lots of models and theories are successful, provide explanations, but are not
transparently understood
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Not Dissimilar

DNNs are not relevantly dissimilar from

other MI approaches (precision measurements, e.g.)

in flagging anomalous data, they indicate where traditional model building and
testing can focus
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Is Dissimilar

DNNs in HEP are relevantly dissimilar from

those DNNs making ethical or political decisions (self-driving cars, city planning,
legal decisions, etc.)

many groups try different approaches, low-cost of failure
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xAI LIME

Linear Interpretable Model-agnostic Explanation method

“If the LIME model is influenced by a particular feature, we then infer that the
original black box model was too.”

perturbs inputs and passes them through the DNN

it learns a simple mapping, focusing on closeness to original input

generate reports of important features for given decisions

Been argued that we can explain DNNs just like we explain the world13

13(Fleisher, 2022)
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Conclusion

We have added a powerful tool to our scientific discovery toolbox

They will aid in discovery and therefore help us better explain and understand the
world
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Closing

Thank you
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